Consider the given function.
f(x)=cos3x−cosxx2
Since, the function f(x) is continuous at x=0.
Therefore,
limx→0f(x)=limx→0cos3x−cosxx2
This is the 00 form.
So, apply L-hospital rule,
limx→0f(x)=limx→0−3sin3x+sinx2x
limx→0f(x)=limx→0sinx−3sin3x2x
Again apply L-hospital rule, we get
limx→0f(x)=limx→0cosx−9cos3x2
On putting the limits, we get
f(0)=1−92
f(0)=−82
f(0)=−4
Hence, this is the answer.