1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Mathematics
Factorisation by Common Factors
If the functi...
Question
If the function
f
:
R
→
R
be defined by
f
(
x
)
=
2
x
−
3
and
g
:
R
→
R
by
g
(
x
)
=
x
3
+
5
, then find the value of
(
f
o
g
)
−
1
(
x
)
.
Open in App
Solution
Given,
f
(
x
)
=
2
x
−
3
and
g
(
x
)
=
x
3
+
5
(
f
o
g
)
(
x
)
=
f
(
g
(
x
)
)
=
f
(
x
3
+
5
)
=
2
(
x
3
+
5
)
−
3
=
2
x
3
+
10
−
3
=
2
x
3
+
7
Now, let
(
f
o
g
)
(
x
)
=
y
⟹
2
x
3
+
7
=
y
⟹
x
=
(
y
−
7
2
)
1
3
⟹
(
f
o
g
)
−
1
x
=
(
x
−
7
2
)
1
3
Suggest Corrections
0
Similar questions
Q.
If
f
:
R
→
R
,
g
:
R
→
R
be two functions given by
f
(
x
)
=
2
x
−
3
and
g
(
x
)
=
x
3
+
5
, then
(
f
o
g
)
−
1
(
x
)
is equal to
Q.
Let
f
:
R
→
R
and
g
:
R
→
R
be two functions given by
f
(
x
)
=
2
x
−
3
,
g
(
x
)
=
x
3
+
5.
Then
(
f
o
g
)
−
1
(
x
)
is equal
Q.
If the function
f
:
R
→
R
be defined by
f
(
x
)
=
2
x
−
3
a
n
d
g
:
R
→
R
by
g
(
x
)
=
x
3
+
5
,
then find fog and show that fog is invertible. Also find
(
f
o
g
)
−
1
,
hence find
(
f
o
g
)
−
1
(
9
)
.
Q.
Let
f
:
R
→
R
,
g
:
R
→
R
be two function given by
f
(
x
)
=
2
x
−
3
,
g
(
x
)
=
x
3
+
5
. Then
(
f
o
g
)
−
1
{
x
}
is equal to
Q.
Let
f
:
R
→
R
,
g
:
R
→
R
be two functions given by
f
(
x
)
=
5
x
−
4
and
g
(
x
)
=
x
3
+
7
then
(
f
o
g
)
−
1
(
x
)
equals
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Method of Common Factors
MATHEMATICS
Watch in App
Explore more
Factorisation by Common Factors
Standard VIII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app