The correct option is B 2
Given f(x)=2x3−9ax2+12a2x+1 attains maximum and minimum at p and q respectively
∴ f′(p)=0,f′(q)=0
f′′(p)<0 and f′′(q)>0
Now, f′(p)=0
and f′(q)=0
⇒ 6p2−18ap+12a2=0
and 6q2−18aq+12a2=0
⇒ p2−3ap+2a2=0
and q2−3aq+2a2=0
⇒ p=a,2a,q=a,2a.......(i)
Now f′′(p)<0
⇒ 12p−18a<0
⇒ p<32a........(ii)
and f′′(q)>0 ⇒ 12q−18a>0
⇒ q>32a......(iii)
From Eqs, (i),(ii),(iii) we get
p=a,q=2a
Now p2=q
⇒ a2=2a
⇒ a=0,2
But for a=0,f(x)=2x3+1 which does not attains a maximum or minimum fror any value of x. Hence a=2