The correct option is C 2
Given f(x)=2x3−9ax2+12a2x+1
⇒f′(x)=0 for maximum or minimum
⇒6x2−18ax+12a2=0
⇒x=a,2a(by observation)
Also x2=x21 (given)
⇒a can not be <0
Now if a>0 then local minimum occurs at x=2a and local maximum at x=a so x1=a and x2=2a. Using x2=x21
⇒2a=a2⇒a2−2a=0
⇒a=0,a=2∵a≠0
⇒a=2 is the required value of a
Hence choice (c) is correct answer.