The correct option is A A=0
Given f(x)=⎧⎨⎩x2−(A+2)x+2Ax−2,x≠22,x=2
Since, f(x) is continuous at x=2
limh→0f(2+h)=limh→0f(2−h)=f(2) ...(1)
RHL=limx→2+
=limh→0f(2+h)
=limh→0(2+h)2−(A+2)(2+h)+2Ah
=limh→04+4h+h2−2A−4−Ah−2h+2Ah
=limh→02h+h2−Ahh
=limh→0h+2−A
⇒2−A
Given f(2)=2
So, by eqn (1)
2−A=2
⇒A=0