If the function f(x)=(1+|sinx|)a|sinx|,−π6<x<0b,x=0etan2xtan3x,0<x<π6, is continuous at x = 0, then
A
a=logeb,a=23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
b=logea,a=23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=logeb,b=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Noneofthese
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ca=logeb,b=2 LHL=limx→0−f(x)=limh→0−f(0−h)=limh→0−(1+(sin(−h)))a|sin(−h)|=limh→0−(1+sinh)a|sin(−h)|=elimh→0−(1+sinh−1)a|sin(−h)|=eaRHL=limx→0+f(x)=limh→0f(h)=limh→0etan2htan3h=elimh→023.tan2h2h.3htan3h=e23∴V.F.=f(0)=b⇒b=e23=ea∴a=23,b=e23ora=logeb