b 5 Given: fx=log 1+3x-log 1-2xx, x≠0k, x=0 If f(x) is continuous at x = 0, thenlimx→0fx=f0. ⇒limx→0log1+3x-log1-2xx=k ⇒limx→03 log 1+3x3x-2 log 1-2x2x=k⇒3limx→0log 1+3x3x-2limx→0log 1-2x2x=k⇒3limx→0log 1+3x3x+2limx→0log 1-2x-2x=k⇒3×1+2×1=k ∵ limx→0log 1+xx=1⇒k=3+2=5