If the function f(x)=ax+b(x−1)(x−4)is monotonic decreasing at x=2, then the possible values of a and b are:
A
a<0,b<0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a<0,b>0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a>0,b∈R
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a≥0,b<0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Da≥0,b<0 Let y=f(x)=ax+b(x−1)(x−4) ⇒dydx=[a(x2−5x+4)−(ax+b)(2x−5)](x2−5x+4)2⇒dydx=[ax2−5ax+4a−2ax2+5ax−2bx+5b](x2−5x+4)2⇒dydx=[−ax2−2bx+4a+5b](x2−5x+4)2 ∴dydx at x=2 is: dydx=−4a−4b+4a+5b4 ⇒dydx=b4
For f(x) to be monotonic decreasing at x=2 we need to have b4<0 ⇒b<0,a∈R