wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the function f(x)=ksinx+2cosxsinx+cosx is strictly increasing for all values of x, then

A
K<1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
K>1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
K<2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
K>2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D K>2
The given function is:

f(x)=Ksinx+2cosxsinx+cosx

Differentiating once w.r.t x and and making it greater than 0 to make it monotonically increasing we get,

f(x)=(Kcosx2sinx)(sinx+cosx)(cosxsinx)(Ksinx+2cosx)(sinx+cosx)2

f(x)=Ksinxcosx+Kcos2x2sin2x2sinxcosxKsinxcosx2cos2x+Ksin2x+2sinxcosx(sinx+cosx)2

f(x)=Kcos2x+Ksin2x2cos2x2sin2x(sinx+cosx)2

f(x)=K2(sinx+cosx)2

Now, f(x)>0

K2(sinx+cosx)2>0

K2>0

K>2 .....Answer









flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon