If the function f(x) is continuous at x=0, where f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩sin((a+1)x)+sinxx;x<0c;x=0(x+bx2)1/2−x1/2bx3/2;x>0,
then the possible values of a,b,c can be
A
a=−12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
b=−32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
b=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
c=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dc=12 f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩sin[(a+1)x]+sinxx;x<0c;x=0(x+bx2)1/2−x1/2bx3/2;x>0
At x=0,f(0)=c
f(0−)=limx→0−f(x)=limh→0f(0−h)=limh→0sin[(a+1)(0−h)]+sin(0−h)0−h=limh→0−sin[(a+1)h]−sinh−h=limh→0sin[(a+1)h]+sinhh
Using L'Hospital's Rule, we get f(0−)=limh→0cos[(a+1)h]⋅(a+1)+cosh1⇒f(0−)=a+2
f(0+)=limx→0+f(x)=limh→0f(0+h)=limh→0(h+bh2)1/2−h1/2bh3/2=limh→0(1+bh)1/2−1bh
Using L'Hospital's Rule, we get f(0+)=limh→0b2√1+bhb=12
∵f(x) is continuous at x=0, so f(0−)=f(0+)=f(0)⇒a+2=12=c∴a=−32,b∈R,c=12