If the function f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(1+|tanx|)p|tanx|,−π3<x<0qx=0esin3xsin2x,0<x<π3 is continuous at x=0, then
A
p=32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
p=23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
logeq=p
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
q=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Alogeq=p Bp=32 Since f(x) is continuous at x=0 limx→0−f(x)=f(0)=limx→0+f(x)...(1) Now , LHL=limx→0−f(x)=limx→0(1−tanx)−ptanx Since limx→0(1+x)1/x=e ⇒LHL=ep...(2) Now, RHL=limx→0+f(x)=limx→0esin3xsin2x =limx→0e32(sin3x3x)(2xsin2x) RHL=e3/2....(3) From (1), (2) and (3) ep=e3/2=q ⇒p=32=logeq