If the function
f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩(1+|sin x|)a|sin x|,,−π6<x<0b,x=0etan 2xtan 3x,0<x<π6, is continuous at x = 0, then
a=loge b,a=23
LHL=limx→0−f(x)=limh→0f(0−h)=limh→0(1+(sin(−h)))a|sin(−h)|Let |sin x|=k. As x→0, k →0LHL=limk→0(1+k)ak=ea
RHL=limx→0+f(x)=limh→0f(h)=limh→0etan 2htan 3h=elimh→023.tan 2h2h.3htan 3h=e23
Since f(x) is continuous at x = 0,
ea=b=e23⇒a=23, a=loge b