If the function f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩1xloge⎛⎜
⎜⎝1+xa1−xb⎞⎟
⎟⎠,x<0k,x=0cos2x−sin2x−1√x2+1−1,x>0
is continuous at x=0, then 1a+1b+4k is equal to:
A
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−5 Given: f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩1xloge⎛⎜
⎜⎝1+xa1−xb⎞⎟
⎟⎠,x<0k,x=0cos2x−sin2x−1√x2+1−1,x>0
As the function is continuous at x=0, so limx→0−f(x)=limx→0+f(x)=f(0)
Now, limx→0−loge(1+xa)−loge(1−xb)x=k
Using L'Hospital's Rule ⇒limx→0−11+xa×1a−11+xb×(−1b)1=k⇒1a+1b=k⋯(1)
Also, limx→0+cos2x−sin2x−1√x2+1−1=k⇒limx→0+−2sin2x√x2+1−1=k⇒limx→0+(−2sin2x(√x2+1)2−12)(√x2+1+1)=k⇒limx→0+(−2sin2xx2)(√x2+1+1)=k⇒k=−4
Hence, 1a+1b+4k=k+4k⇒1a+1b+4k=−4−1=−5