The correct option is C 0
Given, f(x)=⎧⎪⎨⎪⎩x2−(k+2)x+2kx−2forx≠22forx=3⎫⎪⎬⎪⎭
Since, f(x) is continuous at x=2.
Therefore, limx→2f(x)=f(2)
⇒limx→2x2−(k+2)x+2kx−2=2ApplyL′−hospitalrule,weget\displaystyle \lim_{x \rightarrow 2} \dfrac {2x - (k + 2)}{1} = 2\Rightarrow 2(2) - (k + 2) = 2\Rightarrow k + 2 = 2\Rightarrow k = 0$