Given, limx→1f(x)−2x2−1=π ⇒limx→1(f(x)−2)limx→1(x2−1)=π ⇒limx→1(f(x)−2)=π×limx→1(x2−1) ⇒limx→1f(x)−limx→12=π×(limx→1x2−limx→11) ⇒limx→1f(x)−2=π×(12−1) ⇒limx→1f(x)−2=π×0 ⇒limx→1f(x)−2=0 ⇒limx→1f(x)=2
Thus, limx→1f(x)=2
If the function f(x) satisfies limx→1f(x)−2x2−1=π, evaluate limx→1 f(x).
If the function f(x) satisfies limx→1f(x)−2x2−1=π,then limx→1f(x)=