If the function f(x) satisfies limx→1f(x)−2x2−1=π,then limx→1f(x)=
1
2
0
3
ltx→1f(x)−2x2−1=π⇒ltx→1f(x)=2 ⇒f(1)=2
If the function f(x) satisfies limx→1f(x)−2x2−1=π, evaluate limx→1 f(x).
If f(x) = {x,when 0≤ x ≥ 1 2−x,2-x when 1 ≤ x ≥ 2 then limx→1 f(x) =