If the function f(x) satisfies limx→1f(x)−2x2−1=π, evaluate limx→1 f(x).
Since limx→1(x2−1)=(1)2−1
= 1-1=0
∴limx→1f(x)−2x2−1 = π becomes limx→1 [f(x)-2]=0
⇒limx→1 f(x) - 2 = 0 ⇒limx→1 f(x) = 2.
If the function f(x) satisfies limx→1f(x)−2x2−1=π,then limx→1f(x)=