1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative
If the functi...
Question
If the function f(x) = x
2
− kx + 5 is increasing on [2, 4], then
(a) k ∈ (2, ∞)
(b) k ∈ (−∞, 2)
(c) k ∈ (4, ∞)
(d) k ∈ (−∞, 4).
Open in App
Solution
(d) k ∈ (−∞, 4)
f
x
=
x
2
-
k
x
+
5
f
'
x
=
2
x
-
k
Given
:
f
(
x
)
is
increasing
on
[2,
4]
.
⇒
f
'
x
>
0
⇒
2
x
-
k
>
0
⇒
k
<
2
x
∵
x
∈
2
,
4
,
maximum value of
k
is 4,
k
< 4.
∴
k
∈
-
∞
,
4
Suggest Corrections
0
Similar questions
Q.
If the function f(x) = 2x
2
− kx + 5 is increasing on [1, 2], then k lies in the interval
(a) (−∞, 4)
(b) (4, ∞)
(c) (−∞, 8)
(d) (8, ∞)
Q.
If the function f(x) = kx
3
− 9x
2
+ 9x + 3 is monotonically increasing in every interval, then
(a) k < 3
(b) k ≤ 3
(c) k > 3
(d) k ≥ 3
Q.
If the function
f
(
x
)
=
2
x
2
−
k
x
+
5
is increasing in
[
1
,
2
]
, then '
k
' lies in the interval
Q.
The least possible value of
k
for which the function
f
(
x
)
=
x
2
+
k
x
+
1
may be increasing on
[
1
,
2
]
is
Q.
If
f
(
x
)
=
x
3
+
4
x
2
+
kx
+
1
is a monotonically decreasing function of x in the largest possible interval (-2, -2/3). Then
.