(b) 13 Given: fx=2x-sin-1x2x+tan-1x If f(x) is continuous at x = 0, then limx→0fx=f0⇒limx→02x-sin-1x2x+tan-1x=f0⇒limx→0x2-sin-1xxx2+tan-1xx=f0⇒limx→02-sin-1xx2+tan-1xx=f0⇒2-limx→0sin-1xx2+limx→0tan-1xx=f0⇒2-12+1=f0⇒f0=13