wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the function f(x)=cos(sinx)-cosxx4 is continuous at each point in its domain and f(0)=1k, then k is:


Open in App
Solution

Step-1 Applying the condition for continuity:

It is given that the function is continuous at each point in its domain, so limx0cos(sinx)-cosxx4=f(0)

limx0-2sinsinx+x2sinsinx-x2x4=1k[cosa-cosb=-2sina+b2sina-b2]limx02sinsinx+x2sinsinx-x2x4·sinx+x2sinx+x2·sinx-x2sinx-x2=1k

Step-2 Solving limit for the value of k:

Let, α=sinx+x2 and β=sinx-x2

limx0-2sinαsinβx4·αα·ββ=1k-limx02x4·sinαα·sinββ·αβ1=1k-limx02x4·αβ=1k[limθ0sinθθ=1]-limx02x4·sinx+x2sinx-x2=1k[α=sinx+x2,β=sinx-x2]-limx02sinx+x2xsinx-x2x3=1k-limx0sinxx+xx12sinx-x2x3=1k-limx01+112sinx-xx3=1k

Step-3 Using Maclaurin series for the limit:

We know that the Maclaurin series expansion of sinx is
sinx=x-x33!+x55!-x77!+sinx-xx3=x-x33!+x55!-x77!+-xx3sinx-xx3=-13!+x25!-x47!+

Thus,

-limx01+112-13!+x25!-x47!+=1k--13!+025!-047!+=1k16=1kk=6

Therefore, the value of k is 6.


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon