If the function g(t)=∫t22tcot−1∣∣∣1+x(1+t)2−x∣∣∣dx, then g(5)g(3) is equal to
5
5
g(t)=∫t22tcot−1∣∣∣1+x(1+t)2−x∣∣∣dx ⋯⋯ ⋯(i)g(t)=∫t22tcot−1∣∣∣(1+t)2−x1+x∣∣∣dx ⋯⋯ (ii)
(i) + (ii) gives
2g(t)=∫t22t(π2)dx⇒g(t)=π4((t−1)2−1)⇒g(5)g(3)=π4(15)π4(3)=5