If the function is (1+|sinx|)a|sinx|, x<0 b,x=0 etan2xtan3x,0<x<π6, Continuous at x = 0, then
A
a=23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
b=a=e23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=lnb
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a=32=b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Aa=23 Ca=lnb L.H.S=limx→0−f(x)=limx→0(1+sinh)a|sinh|=ea R.H.S=limx→0+f(x)=limx→0(1+sinh)a|sinh|=e23 f (x) is continuous at x = 0 ⇒ limx→0−f(x)=limx→0+f(x)=f(10) ∴b=ea=e23 ∴a=23.