The correct option is C f′(x)<f(x) , 0<x<14
Define a function g(x)=e−xf(x)
⇒g′(x)=e−x(f′(x)−f(x))
⇒g′′(x)=e−x[f′′(x)−2f′(x)+f(x)]
Given that f′′(x)−2f′(x)+f(x)≥ex, x∈[0,1]
⇒e−x(f′′(x)−2f′(x)+f(x))≥1
Hence g′′(x)≥1>0
So g′(x) is increasing.
So, for x<1/4, g′(x)<g′(1/4)
⇒g′(x)<0
⇒(f′(x)−f(x))e−x<0
⇒f′(x)<f(x) in (0,1/4) .