If the functions g(x)={x2,−1≤x≤2x+2,2<x≤3
and f(x)={x+4,x≤12x+1,1<x≤2
then, the number of roots fo the equation f(g(x))=0 is
g(x)={x2,−1≤x≤2x+2,2<x≤3
f(x)={x+4,x≤12x+1,1<x≤2
⇒f(g(x))={g(x)+4,g(x)≤12g(x)+1,1<g(x)≤2
When −1≤x≤1,
then g(x)=x2⇒0≤g(x)≤1
When 1<x≤√2,
then g(x)=x2⇒1<g(x)≤2
f(g(x))={x2+4,−1≤x≤1,0≤g(x)≤12(x2)+1,1<x≤√21<g(x)≤2
f(g(x))>0 for x∈[−1,√2]