If x2+x3x-1-x+32x+12+x2x3-3x-3x2+43x=a0+a1x+......+a7x7 then the value of a0 is
35
24
23
22
21
Explanation for the correct option
Determinant:
It is given that x2+x3x-1-x+32x+12+x2x3-3x-3x2+43x=a0+a1x+......+a7x7.
Put x=0 in both sides of the equation.
⇒02+030-1-0+320+12+0203-30-302+430=a0+a10+......+a707⇒0-1312-3-340=a0⇒a0=02×0--3×4--11×0--3×-3+31×4--3×2⇒a0=0-9+34+6⇒a0=30-9⇒a0=21
Therefore, the value of a0 is 21.
Hence, option(E) is the correct option