The correct option is B −43
If the given expression x2−(5m−2)x+(4m2+10m+25) can be rewritten as perfect square,
this means that the roots of equation x2−(5m−2)x+(4m2+10m+25)=0 will be equal.
⇒D=0
If we have ax2+bx+c=0 then D=b2−4ac
Here, we have a=1, b=−(5m−2), c=(4m2+10m+25)
⇒D=(5m−2)2−4(4m2+10m+25)=0⇒25m2−20m+4−16m2−40m−100=0⇒9m2−60m−96=0⇒3m2−20m−32=0⇒(m−8)(3m+4)=0∴m=−43,8