If the given figure shows parallelogram ABCD. Points P and Q trisect the side AB, then ____.
Area (△DPQ)=16×Area (ABCD)
Here DPQC is a trapezium,
We know that triangles between same parallels and on the same base have half the area of parallelogram.
So, ar(△DQC)=12×ar(ABCD)
Let h be the height between the parallel lines
PQ=13×AB
Hence, area of DPQC
=12×h×(PQ+DC)
=h2×(DC+AB3)
=h2×(DC+DC3)
=h2×(4DC3)
=2h×DC3
Now, we know that h×DC= area of parallelogram ABCD.
Hence, area of trapezium DPQC=23×area of parallelogram ABCD
Now, Area(DPQC)=Area(△DPQ)+12×Area (ABCD)
23×Area(ABCD)−12×Area(ABCD)=Area(△DPQ)
Or, Area(△DPQ)=16×Area(ABCD).