If the H.M. of two distinct numbers a and b is an−1+bn−1an−2+bn−2, then the value of n is
Open in App
Solution
The H.M. of a and b =2aba+b
From given condition, we get an−1+bn−1an−2+bn−2=2aba+b⇒an+an−1b+abn−1+bn=2an−1b+2abn−1⇒an−an−1b−abn−1+bn=0⇒an−1(a−b)−bn−1(a−b)=0⇒(an−1−bn−1)(a−b)=0⇒(an−1−bn−1)=0(∵a≠b)⇒an−1=bn−1 ⇒(ab)n−1=1 ∴n=1