wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the HCF of the polynomials p(x)=(x+1)(x2+ax+4) and q(x)=(x+4)(x2+bx+2) is h(x)=x2+5x+4, find the values of a and b.

Open in App
Solution

p(x)=(x+1)(x2+ax+4) ........ (i)
and q(x)=(x+4)(x2+bx+2) ........ (ii)
h(x)=x2+5x+4 is HCF of p(x) and q(x)
h(x)=x2+5x+4
=x2+4x+x+4
=x(x+4)+(x+4)
=(x+4)(x+1)
x=4,1 are the roots of p(x),q(x) and h(x)
p(x)=(x+1)(x2+ax+4)=(x+1)(x+4)f(x), for some f(x)
(x2+ax+4)=(x+4)f(x)
Take x=4
((4)2+a(4)+4)=0
164a+4=0
a=5
Similarly, q(x)=(x+1)(x+4)g(x), for some factor g(x) of q(x)
(x2+bx+2)=(x+1)g(x)
Take x=1
(1)2+b(1)+2=0
1b+2=0
b=3
Hence, a=5 and b=3

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
GCD Long Division
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon