Let z−1=r(cosα+isinα)=reiα
Or (x−1)+iy=rcosα+irsinα
∴r2=(x−1)y2 and tanα=yx−1
∴ Given expression, rei(α−θ)+1re−i(α−θ)
Its imaginary part is r sin(α−θ)−1rsin(α−θ)=0
or (r−1r)sin(α−θ)=0
Either (r−1r)=0⇒r2=1⇒(x−1)2+y2=1
Above represents a circle centred at (1,0) and radius 1.
or sin(α−θ)=0 ∴α−θ=0
or tanθ=tanα
or y(x−1)tanα∴y(x−1)tanα
Above represents a straight line passing through the point (0,1).