1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XIII
Mathematics
Geometrical Applications of Differential Equations
If the indepe...
Question
If the independent variable
x
is changed to
y
, then the differential equation
x
d
2
y
d
x
2
+
(
d
y
d
x
)
3
−
(
d
y
d
x
)
=
0
is changed to
x
d
2
x
d
y
2
+
(
d
x
d
y
)
2
=
k
where
k
equals
Open in App
Solution
d
y
d
x
=
1
d
x
d
y
;
d
2
y
d
x
2
=
d
d
y
⎛
⎜ ⎜ ⎜ ⎜
⎝
1
d
x
d
y
⎞
⎟ ⎟ ⎟ ⎟
⎠
.
d
y
d
x
=
−
1
(
d
x
d
y
)
3
d
2
x
d
y
2
Hence,
x
d
2
y
d
x
2
+
(
d
y
d
x
)
3
−
y
d
d
x
=
0
becomes
−
x
.
1
(
d
x
d
y
)
3
d
2
x
d
y
2
+
1
(
d
x
d
y
)
3
−
1
(
d
x
d
y
)
=
0
or
x
d
2
x
d
y
2
−
1
+
(
d
x
d
y
)
2
=
0
or
x
d
2
x
d
y
2
+
(
d
x
d
y
)
2
=
1
∴
k
=
1
Suggest Corrections
0
Similar questions
Q.
If the independent variable
x
is changed to
y
, then the differential equation
x
d
2
y
d
x
2
+
(
d
y
d
x
)
3
−
(
d
y
d
x
)
=
0
is changed to
x
d
2
x
d
y
2
+
(
d
x
d
y
)
2
=
k
where
k
equals
Q.
If
y
=
f
(
x
)
is a differentiable function, then show that
d
2
x
d
y
2
=
−
(
d
y
d
x
)
−
3
d
2
y
d
x
2
Q.
If
y
=
f
(
x
)
is a differentiable function of
x
, then show that
d
2
x
d
y
2
=
−
(
d
y
d
x
)
−
3
.
d
2
y
d
x
2
Q.
The differential equation of the family of curves
y
2
=
4
a
(
x
+
a
)
, where a is an arbitrary constant, is