If the inequality sin2x+acosx+a2>1+cosx holds for any xϵR, then the largest negative integral value of a is
sin2x=1−cos2x
So, 1−cos2x+acosx+a2>1+cosx
i.e. cos2x+cosx(1−a)−a2<0
⇒1+1−a−a2<0 or a2+a−2>0 or (a+2)(a−1)>0
So, the largest possible negative integral value
of a comes out to be −3.