sin2x+acosx+a2>1+cosx ∀ x∈R
So, putting x=0, we get
a+a2>2
⇒(a+2)(a−1)>0
⇒a∈(−∞,−2)∪(1,∞)
Therefore, the largest negative integral value of a is −3
Alternate solution:
sin2x+acosx+a2>1+cosx
⇒a2+acosx−cos2x−cosx>0
When inequality hold
⇒a2+acosx−cos2x−cosx=0
⇒a=−cosx±√5cos2x+4cosx2
Now, √5cos2x+4cosx is maximum when cosx=1
⇒a=1,−2 at cosx=1
∴(a+2)(a−1)>0
⇒a∈(−∞,−2)∪(1,∞)
Therefore, the largest negative integral value of a is −3