The correct option is A 14
Since, m and n are selected between 1 and 100, hence sample space =100×100
Also, 71=1,72=49,73=343,74=2401
75=16807 etc.
Hence, 1,3,7 and 9 will be the last digits in the power of 7. Hence, for favourable cases.
nm↓
1,2 1,2 1,3 .... 1,100
2,1 2,2 2,3 ... 2,100
100,1 100,2 100,3 ... 100,100
for m=1,n=3,7,11,....97
Therefore, favorable cases =25
for m=2,n=4,8,12,10,.....100
Therefore, favorable cases =25
Similarly for every m, favourable n are 25.
Total favourable cases =100×25
Hence, required probability =100×25100×100=14.