If the integral of (sin2x-cos2x)=12sin(2x-a)+b then find a and b.
Step 1: Find integration of sin2x-cos2x:
∫(sin2x-cos2x)dx=-12cos2x-sin2x2+C[∵∫sinx=-cosx+Cand∫cosx=sinx+C]=-12cos2x-sin2x+C=-222cos2x-sin2x+C[Multiplyanddivideby2]=22cos2x-12+sin2x-12+C=12cos2x·sin5π4+sin2x·cos5π4+C[∵cosandsinarenegativeinIIIquadrant]=12sin2x+5π4+C[∵sin(a+b)=sina·cosb+cosa·sinb]
Step 2: Compare with given equation to find a and b
Comparing 12(sin2x+5π4)+Cand12sin(2x-a)+b:
After comparing we get the values of a and b.
a=-5π4andb=C(constant),b∈allrealnumbers
Therefore a=-5π4andb∈R (all real numbers).