wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the integral of (sin2x-cos2x)=12sin(2x-a)+b then find a and b.


Open in App
Solution

Step 1: Find integration of sin2x-cos2x:

(sin2x-cos2x)dx=-12cos2x-sin2x2+C[sinx=-cosx+Candcosx=sinx+C]=-12cos2x-sin2x+C=-222cos2x-sin2x+C[Multiplyanddivideby2]=22cos2x-12+sin2x-12+C=12cos2x·sin5π4+sin2x·cos5π4+C[cosandsinarenegativeinIIIquadrant]=12sin2x+5π4+C[sin(a+b)=sina·cosb+cosa·sinb]

Step 2: Compare with given equation to find a and b

Comparing 12(sin2x+5π4)+Cand12sin(2x-a)+b:

After comparing we get the values of a and b.

a=-5π4andb=C(constant),ballrealnumbers

Therefore a=-5π4andbR (all real numbers).


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon