If the last term in the binomial expansion of (213−1√2)n is (135/3)log3 8, then the 5th term from the beginning is
210
Last term of (213−1√2)n is
tn+1=nCn(213)n−n(−1√2)n=nCn(−1)n12n/2=(−1)n2n/2
Also, we have
(135/3)log3 8=1(35/3)3 log3 2=3−(53log3 23)=2−5Thus, (−1)n2n/2=2−5 ⇒ (−1)n2n/2=(−1)1025⇒ n2=5 ⇒ n=10Now, t5=t4+1=10C4(213)10−4(−1√2)4=10!4!6!(213)6(−1)4(2−12)4=210(22)(1)(2−2)=210