The correct options are
B e=(√5−1)/2 C e=(√5+1)/2Given LR of hyperbola subtends 900 at its centre
Let there be a hyperbola : x2a2−y2b2=1----------------(1)
So, eccentricity , e = √1+b2a2
Ends of LR, L: (ae,b2a) &L'(ae,−b2a)
C : centre(0,0)
∠LCL′=900
⇒△LCL′=right angled triangle
⇒ It must follow pythogores theorem (H2=P2+B2)
ForLC and L′Cand LL′
LL'=length of 2b2a
¯¯¯¯¯¯¯¯LC=√(ae−0)2+(b2a−0)=√a2e2+b4a2=√a4e2+b4a2--------------------(2)
¯¯¯¯¯¯¯¯LC=¯¯¯¯¯¯¯¯¯L′C due to symmetry along x axis--------------(3)
⇒ Applying Pythagoras theorem , (¯¯¯¯¯¯¯¯¯LL′)2=(¯¯¯¯¯¯¯¯LC)2(¯¯¯¯¯¯¯¯¯L′C)2
⇒4b4a2=2(LC)2 from equation (3)
⇒4b4a2=2(a2e2+b4a2) from equation (2)
⇒4b4a2−2b4a2=2a2e2
⇒2b4a2=2a2e2
⇒b4=a4e2
⇒(a2(e2−1))2=a4e2
(a2(e2−1))
⇒a4(e2−1)2=a4e2
⇒(e2−1)2=e2⇒e2−1=±e⇒e2±e−1=0
e=±1±√1+42=±1±√52
e≠−1−√52 (negative),1−√52
e=√5−12,1+√52.