wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the latus-rectum through one focus of a hyperbola subtends a right angle at the farther vertex,then write the eccentricity of the hyperbola.

Open in App
Solution

It is given that ΔABCis right angle triangle.

AB2=BC2+AC2

[Using phyyhagoros theorem]

(aeae)2+(b2a+b2a)=(ae+a2)+(b2a)+(ae+a)2+(b2a)2

4b2a2=2a2(e+1)2+2b4a2

4b22b4a2=2a2(e+1)2

2b4a4=2a2(e+1)2

b4a4=(e+1)2 ...(i)

Now,

b2=a2(e+1)

b4=a4(e21)2 [Using both sides]

b4a4=(e21)2

(e+1)2=(e21)[Using equation (I)]

(e+1)2=(e21) (e21)

(e+1)2=(e1) (e+1) (e21)

[ a2b2=(ab) (a+b)]

e+1=(e1) (e21)

e+1=(e1) (e1) (e+1)

[a2b2=(ab)(a+b)]

1=(e1)2

1=e2+12e

e2e=0

e(e2)=0

e2=0 [ e0]

e=2

Hence,e=2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon