If the latus-rectum through one focus of a hyperbola subtends a right angle at the farther vertex,then write the eccentricity of the hyperbola.
It is given that ΔABCis right angle triangle.
∴AB2=BC2+AC2
[Using phyyhagoros theorem]
⇒(ae−ae)2+(b2a+b2a)=(ae+a2)+(−b2a)+(ae+a)2+(b2a)2
⇒4b2a2=2a2(e+1)2+2b4a2
⇒4b2−2b4a2=2a2(e+1)2
⇒2b4a4=2a2(e+1)2
⇒b4a4=(e+1)2 ...(i)
Now,
b2=a2(e+1)
⇒b4=a4(e2−1)2 [Using both sides]
⇒b4a4=(e2−1)2
⇒(e+1)2=(e2−1)[Using equation (I)]
⇒(e+1)2=(e2−1) (e2−1)
⇒(e+1)2=(e−1) (e+1) (e2−1)
[∵ a2−b2=(a−b) (a+b)]
⇒e+1=(e−1) (e2−1)
⇒e+1=(e−1) (e−1) (e+1)
[∵a2−b2=(a−b)(a+b)]
⇒1=(e−1)2
⇒1=e2+1−2e
⇒e−2e=0
⇒e(e−2)=0
⇒e−2=0 [∵ e≠0]
⇒e=2
Hence,e=2