If the least and the largest real values of α, for which the equation z+α|z−1|+2i=0(z∈C and i=√−1) has a solution, are p and q respectively; then 4(p2+q2) is equal to
Open in App
Solution
x+iy+α√(x−1)2+y2+2i=0 ⇒y+2=0 and x+α√(x−1)2+y2=0 y=−2&x2=α2(x2−2x+1+4) ⇒x2(α2−1)−2xα2+5α2=0 ∵x∈R⇒D≥0 ⇒4α4−4(α2−1)5α2≥0 ⇒α2[4α2−20α2+20]≥0 ⇒α2[−16α2+20]≥0 ⇒α2[α2−54]≥0 ⇒α2∈[0,54] ⇒α∈[−√52,√52]
then 4[p2+q2]=4[54+54]=10