The correct option is B 4x=4y+21
Let the coordinates of the end points of the chord be (t21,2t1) and (t22,2t2)
∴1=2t1+t2⇒t1+t2=2 …(1)
Now, the length of the chord is
10√2=√(t1−t2)2(4+(t1+t2)2)⇒10√2=(t1−t2)√8 [From (1)]⇒t1−t2=5 …(2)
From (1) and (2),
t1=72
So, the coordinates of one end of the chord is (494,7)
Equation of the chord is y−7=x−494
∴4x=4y+21