(5x−10)2+(5y+15)2=(3x−4y+7)24⇒(x−2)2+(y+3)2=(12×3x−4y+75)2⇒√(x−2)2+(y+3)2=12×|3x−4y+7|5
This represents an ellipse, whose focus is (2,−3), directrix is 3x−4y+7=0 and eccentricity is 12.
Length of perpendicular from focus to directrix is
=|3×2−4(−3)+7|5=5 units
Also,
ae−ae=5⇒2a−a2=5⇒a=103
Hence, the length of major axis is 203 units
∴3k=20