If the lengths of the sides of a right angled triangle ABC right angled at C are in A.P., find 5(sinA+sinB).
Open in App
Solution
Here ∠C=90o,A+B=90o c2=a2+b2 & 2b=a+c Since c=2b−a & c2=a2+b2 ⇒(2b−a)2=a2+b2 or ba=43 ⇒sinBsinA=43 or sinB+sinAsinB−sinA=71 or cotB−A2=17⇒cosA−B2=75√2 Also 5(sinA+sinB)=5√2cosA−B2=7