The correct option is C 4:5:6
Let the smallest angle be A
and let the sides in ascending order be a, b, c
Then the corresponding angles are A, 180∘−3A, 2A
a, b, c are in A.P.
∴2b=a+c
⇒2×2Rsin(180∘−3A)=2RsinA+2Rsin2A
⇒2sin3A=sinA+sin2A ⋯(1)
⇒6sinA−8sin3A=sinA+2sinAcosA
⇒5sinA−2sinAcosA−8sin3A=0
⇒sinA(−8sin2A−2cosA+5)=0
⇒8cos2A−2cosA−3=0
⇒cosA=34
or cosA=−12 (not possible)
∴sinA=√74
sin2A=2sinAcosA=3√78
sin3A=sinA+sin2A2=5√716
∴a:b:c=sinA:sin3A:sin2A
=√74:5√716:3√78
=4:5:6