The correct option is B √33712
For the hyperbola 3x2−4y2=1,
Slope of the tangent ,
6x−8ydydx=0⇒dydx=3x4y
So, slope of normal at point(x1,y1),
mn=−4y13x1=−34
⇒9x1−16y1=0⋯(1)
Also point (x1,y1) lies on the line 3x+4y=7
⇒3x1+4y1=7⋯(2)
solving (1) and (2), we get
⇒x1=43,y1=34
Distance from the origin
⇒OP=√(43)2+(34)2 =√33712