The equation of given curve is xy = 1.
Let (x1, y1) be the point of contact of normal with the curve.
.....(1)
Now,
xy = 1
Differentiating both sides with respect to x, we get
∴ Slope of the normal at (x1, y1)
[Using (1)]
The given equation of normal to the curve is ax + by + c = 0.
Slope of this line =
Now, is always positive.
∴ < 0 ∀ x ∈ R
Thus, the set of values of is the set of all negative real numbers i.e. (−∞, 0).
If the line ax + by + c = 0 is normal to the curve xy = 1, then the set of values of , is __(−∞, 0)__.