x−12=y+13=z−14 and x−31=q−k2=z1
Line 1=t(say)Line 2=p(say)
x=2t+1x=p+3
y=3t−1y=2p+k
z=4t+1z=p
equating x&z coordinates
2t+1=p+3⇒2t−p=2(1)
4t+1=p+3⇒4t−p=−1(2)
Adding (1)&(2) by Multiple (2) by `-1’
−2t=3⇒t=−3/2
⇒p=4×(−32)+1
p=−5
∴y=2p+k
⇒y=−10+k
&y=3t−1⇒y=−92−1=−112
⇒−10+k=−112
⇒k=−112+10
k=+92