The correct option is
B (3,1)x2+y2−2x=35⇒(x−1)2+y2=85So, Radius, R=2√25 and it's center is at (1,0)
ie, Distance, d from the circle to ax+by+c=0 is,
d=a×1+b×0+c√a2+b2=a+c√a2+b2=2√25⟶(1) (Inorder to satisfy the criterion of a tangent)
x2+y2+2x−4y+1=0⇒(x+1)2+(y−2)2=4
So, It's center is at ((−1),2)
As ax+by+c=0 is normal to the circle, it should go through the centre of the circle.
ie, a−2b=c and (y−2)=m(x+1)⟶(2)
Substituting c in (1),
a+(a−2b)√a2+b2=2√25
⇒a−b√a2+b2=√25
So, we can say (a−b)=k√2 and a2+b2=5k2 foe some constant k.
a2+b2−(a−b)2=2ab=5k2−2k2=3k2
(a−b)2+4ab=(a+b)2=6k2+2k2=8k2⇒(a+b)=2k√2
a=12((a+b)+(a−b))=12(3k√2)
b=12((a+b)−(a−b))=12(k√2)
Slope of the line, m=dydx
ddx(ax+by+c)=0⇒a+bdydx=0
ie, m=(−a)b=(−3) (from above equations of a and b)
Substituting the slope in (2),
(y−2)=(−3)(x+1)⇒3x+y+1=0
Compairing with general equation given,
(a,b)=(3,1)
Option B is the correct answer.