If the line xā12=yā3a=z+13 lies in the plane bx+2y+3zā4=0, then
a=112, b=1
a=−52, b=−7
a=−112, b=1
a=1, b=−112
∵ line lies in plane.
⇒(1,3,−1) also lies in plane
⇒b+6−3−4=0
⇒b=1
Also, normal of the plane will be perpendicular to the line.
⇒2b+2a+9=0
⇒2+2a+9=0
⇒a=−112
In each of the following determine rational numbers a and b :
(i) √3−1√3+1=a−b√3
(ii) 4+√22+√2=a−√b
(iii) 3+√23−√2=a+b√2
(iv) 5+3√37+4√3=a+b√3
(v) √11−√7√11+√7=a−b√77
(vi) 4+3√54−3√5=a+b√5
If the coefficient of x7 in [ax2+(1bx)]11 equals the coefficient of x−7 in [ax2−(1bx)]11, then 'a' and 'b' satisfy the relation