wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the line lx+my+n=0 is a norma to the hyperbola x2a2y2b2=1, then show that a2l2b2m2=(a2+b2n)2

Open in App
Solution

equation of hyperbola is x2a2y2b2=1
equation of normal axsecθ+bytanθ=a2+b2 ______ (1)
lx+my+b=0 ______ (2) is normal to the parabola
la/secθ=mb/tanθ=n(a2+b2)
lsecθa=mtanθb=na2+b2
secθ=anl(a2+b2) tanθθ=bnm(a2+b2)
We ahve sec2θtan2θ=1
a2+n2l2(a2+b2)2b2n2m2(a2+2)2=1
a2n2l2bn2m2=(a2+b2)2
a2l2b2m2=(a2+b2n)2

1242623_1503204_ans_28482a7140d645ba8a615ae127c4285b.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon