If the line lx+my+n=0 touches a fixed circle x2+y2+2gx+2fy+c=0 such that 4l2+3m2+n2+2mn=0, then |g+f+c| is equal to
Open in App
Solution
If the line lx+my+n=0 touches a fixed circle then the length of perpendicular from centre = Radius ∣∣∣−lg−mf+n√l2+m2∣∣∣=√g2+f2−c
Squaring both sides, ⇒(lg+mf−n)2=(g2+f2−c)(l2+m2) ⇒l2g2+m2f2+n2+2mlgf−2fmn−2nlg=g2l2+g2m2+f2l2+f2m2−cl2−cm2 Now compare the given relation with 4l2+3m2+n2+2mn=0, we get |g+f+c|=4.